Object Oriented Programming in Python
Object oriented programming is a programming paradigm that provides a means of structuring programs so that properties and behaviors are bundled into individual objects. This approach makes code more modular, reusable, and easier to maintain, especially for complex systems.
Understanding Python’s Object Storage: The __dict__
Concept
Before diving into classes and objects, it’s crucial to understand how Python stores object data internally.
The __dict__
Dictionary
Every Python object has a special attribute called __dict__
that stores all the object’s attributes as key-value pairs in a dictionary. This is fundamental to understanding how Python objects work.
# Even a simple object has a __dict__
class SimpleClass:
pass
obj = SimpleClass()
print(obj.__dict__) # Output: {} (empty dictionary initially)
# When we add attributes, they go into __dict__
obj.name = "Alice"
obj.age = 25
print(obj.__dict__) # Output: {'name': 'Alice', 'age': 25}
Key Points About __dict__
:
- Single Storage Location: Each object instance has exactly ONE
__dict__
that stores all its attributes - Dynamic Creation: Attributes are created when first assigned
- Unified Storage: All methods (from base class, derived class) modify the same
__dict__
- Dictionary Access: You can directly access and modify
__dict__
like any dictionary
obj.__dict__['city'] = 'New York' # Same as obj.city = 'New York'
print(obj.city) # Output: New York
1. Classes and Objects: The Foundation
1.1 What is a Class?
Class is a blueprint for creating objects (a particular data structure), providing initial values for state (member variables or attributes), and implementations of behavior (member functions or methods). Think of a class as a template that defines what an object will look like and how it will behave.
1.2 What is an Object?
Object is an instance of a class. When class is defined, only the description for the object is defined. Therefore, no memory or storage is allocated. Memory is allocated only when an object is created. Each object has its own copy of the attributes defined in the class.
1.3 Creating a Class
We can create a class using the class
keyword followed by the class name. The class definition can contain class variables, instance variables, methods, and constructors.
Syntax:
class ClassName:
#code block
Example:
class Person:
def __init__(self):
self.name="Nirajan" # attribute
self.age=20 # attribute
self.classes="Bachelor" # attribute
1.4 Creating an Object
To create an object of a class, we use the class name followed by parentheses. This calls the constructor method of the class and returns an object.
Syntax:
object_name = ClassName()
Example:
person1 = Person() # Creates an instance of Person class
1.5 Accessing class Attributes
We can access the attributes of a class using the dot operator (.
) followed by the attribute name.
Syntax:
object_name.attribute_name
Example:
print(person1.name) # Output: Nirajan
print(person1.age) # Output: 20
print(person1.classes) # Output: Bachelor
1.6 Modifying class Attributes
We can modify the attributes of a class using the dot operator (.
) followed by the attribute name.
Syntax:
object_name.attribute_name = new_value
Example:
person1.age = 21 # Modifies the age attribute for person1
print(person1.age) # Output: 21
2. Methods: Adding Behavior to Classes
2.1 Creating a Member Function
We can create a member function (method) inside a class using the def
keyword followed by the function name. The first parameter of the method should be self
, which refers to the current instance of the class.
Syntax:
class ClassName:
def method_name(self, parameters):
#code block
Example:
class Person:
name="Nirajan"
age=20
classes="Bachelor"
def display(self): # Method to display person information
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"Class: {self.classes}")
2.2 The self
Parameter
The self
parameter is a reference to the current instance of the class, and is used to access variables and methods of the class. It is the first parameter of any method in a class. When you call a method on an object, Python automatically passes the object as the first argument to the method.self.variable means it is a instance variable that is accessible throughout the class and particular object methods but name only in method means it is local to that method only.
Example:
class Person:
def __init__(self):
self.name="Nirajan"
self.age=20
self.classes="Bachelor"
def display(self):
print(f"Name: {self.name}") # Accessing class attribute with self
print(f"Age: {self.age}") # Accessing class attribute with self
print(f"Class: {self.classes}") # Accessing class attribute with self
self.greet() # Calling another method with self
def greet(self):
print("Hello, Welcome to the class")
2.3 Calling a Member Function
We can call a member function of a class using the dot operator (.
) followed by the function name and parentheses.
Syntax:
object_name.method_name(arguments)
Example:
person1.display() # Calls the display method for person1 object
2.4 Nested Member Function
We can call a member function from another member function of the same class using the self
keyword.
Syntax:
class ClassName:
def method1(self):
#code block
self.method2() # Calling method2 from method1
def method2(self):
#code block
Example:
class Person:
def __init__(self):
self.name="Nirajan"
self.age=20
self.classes="Bachelor"
def display(self):
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"Class: {self.classes}")
self.greet() # Calling the greet method from display method
def greet(self):
print("Hello, Welcome to the class")
3. Constructor: Initializing Objects
A constructor is a special type of method (function) which is used to initialize the instance members of the class. It is called when an object of the class is created. This allows you to set up each object with its specific initial state.
3.1 Creating a Constructor
In Python, the constructor method is called __init__
. It is a special method that is automatically called when an object is created.
Syntax:
class ClassName:
def __init__(self, parameters):
#code block
Example:
class Person:
def __init__(self, name, age, classes):
# Initialize instance attributes with provided values
self.name = name # Instance attribute
self.age = age # Instance attribute
self.classes = classes # Instance attribute
def display(self):
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"Class: {self.classes}")
3.2 Creating an Object with Constructor
When an object is created, the constructor method is automatically called with the arguments passed to the class.
Syntax:
object_name = ClassName(arguments)
Example:
# Creating a Person object with name, age, and classes values
person1 = Person("Nirajan", 20, "Bachelor")
In this example, the __init__
method is called with “Nirajan”, 20, and “Bachelor” as arguments, which initializes the object’s attributes.
4. Access Specifiers in Python
Access specifiers control the visibility and accessibility of class members (attributes and methods). Understanding access control is important for implementing encapsulation - one of the four pillars of OOP.
4.1 Public Members
Public members are accessible from outside the class. They can be accessed using the dot operator (.
) from outside the class.
Example:
class Person:
def __init__(self):
self.name = "Alice" # Public member
def display(self): #public method
print(f"Name: {self.name}")
person1 = Person()
print(person1.name) # Output: Alice
person1.display() # Output: Name: Alice
4.2 Protected Members
Protected members are accessible within the class and its subclasses. They are denoted by a single underscore (_
) before the member name.
Example:
class Person:
def __init__(self):
self._name = "Alice" # Protected member
def _display(self): # Protected method
print(f"Name: {self._name}")
class Student(Person):
def show(self):
self._display() # Accessing protected method from subclass
print(f"Accessing protected member: {self._name}")
student1 = Student()
student1.show()
# Output:
# Name: Alice
# Accessing protected member: Alice
# Note: p1=Person() print(p1._name) #this is incorrect as name is protected and only be used inside class and subclass
4.3 Private Members
Private members are accessible only within the class. They are denoted by a double underscore (__
) before the member name.
Example:
class Person:
__city = "New York" # Private member
person1 = Person()
print(person1.__city) # Error: 'Person' object has no attribute '__city'
Example of private variable and method:
class Person:
def __init__(self):
self.__name = "Alice" # Private member
def __display(self): # Private method
print(f"Name: {self.__name}")
def show(self):
self.__display() # Accessing private method within the class
print(f"Accessing private member: {self.__name}") # Accessing private member within the class
person1 = Person()
print(person1.__name) # Error: 'Person' object has no attribute '__name'
person1.__display() # Error: 'Person' object has no attribute '__display'
person1.show() # Correct way to access private members within the class as show() is public
Table of Access Specifiers in Python:
Access Specifier | Accessible from class | Accessible from subclass | Accessible from outside class |
---|---|---|---|
Public | Yes | Yes | Yes |
Protected | Yes | Yes | No |
Private | Yes | No | No |
5. Inheritance in Python
Inheritance is a mechanism in which one class acquires the properties and behavior of another class. The class which inherits the properties and behavior is known as the child class, and the class whose properties and behavior are inherited is known as the parent class.
5.1 Creating a Child Class
To create a child class that inherits from a parent class, we specify the parent class in parentheses after the child class name.
Syntax:
class ChildClassName(ParentClassName):
#code block
Example:
class Employee:
def __init__(self,name,age,id):
self.name=name
self.age=age
self.id=id
def display(self):
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"ID: {self.id}")
class Manager(Employee): # Manager inherits from Employee
def task(self):
self.display() # Accessing inherited method
print("Assigning tasks to employees")
class Developer(Employee): # Developer inherits from Employee
def task(self):
self.display() # Accessing inherited method
print("Developing software applications")
manager1 = Manager("Alice", 30, 101)
manager1.task()
developer1 = Developer("Bob", 25, 102)
developer1.task()
Note: Only public and protected members are inherited by the child class. Private members are not inherited by the child class.
5.2 The super()
Method in Python
When a parent class and a child class define a method with the same name, and we create an object of the child class, invoking the method on the child class object will execute the method defined in the child class, not the one in the parent class. To explicitly call the parent class’s method, we can use the super() function.
To explicitly invoke the parent class’s version of the method, the super() function is used. This is especially useful when the child class’s method needs to build upon or extend the functionality of the parent class’s method.
Syntax:
super().method_name()
Example:
class Person:
def display(self):
print("Person class")
class Student(Person):
def display(self):
super().display() # Calls the parent class's display method
print("Student class")
student1 = Student()
student1.display()
# Output:
# Person class
# Student class
Example with constructor:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
class Student(Person):
def __init__(self, name, age, roll):
super().__init__(name, age) # Call parent class constructor
self.roll = roll
def display(self):
print(f"Name: {self.name}")
print(f"Age: {self.age}")
print(f"Roll: {self.roll}")
student1 = Student("Alice", 30, 101)
student1.display()
# Output:
# Name: Alice
# Age: 30
# Roll: 101
Note: When we use super() it work based on MRO to resolve which class function to use but ClassName.functionName() explicitly tell which class function to use.
5.3 Method Overriding
Method overriding is a feature of object-oriented programming that allows a subclass to provide a specific implementation of a method that is already provided by its parent class. When a method in a subclass has the same name, same parameters or signature, and same return type as a method in its parent class, then the method in the subclass is said to override the method in the parent class.
Example:
class Person:
def display(self):
print("Person class")
class Student(Person):
def display(self): # This overrides Person's display method
print("Student class")
student1 = Student()
student1.display() # Calls Student's display method, not Person's
# Output: Student class
We can also call the parent class’s method from the overridden method using the super()
function:
class Person:
def display(self):
print("Person class")
class Student(Person):
def display(self):
super().display() # Or Person.display(self)
print("Student class")
student1 = Student()
student1.display()
# Output:
# Person class
# Student class
5.4 Types of Inheritance in Python
Inheritance is a mechanism in which one class acquires the properties and behavior of another class. There are different types of inheritance in Python:
5.4.1 Single Inheritance
In single inheritance, a class inherits from only one parent class.
The pictorial representation of single inheritance is:
A | B
Syntax:
class ParentClass:
#code block
class ChildClass(ParentClass):
#code block
Example:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def display(self):
return f"Name: {self.name}, Age: {self.age}"
def __str__(self):
return f"Name: {self.name}, Age: {self.age}"
def __repr__(self):
return f"Person('{self.name}', {self.age})"
def __call__(self):
return f"Name: {self.name}, Age: {self.age}"
class Student(Person):
def __init__(self, name, age, id):
super().__init__(name, age) # or Person.__init__(self, name, age)
self.id = id
def display(self):
print(f"ID: {self.id}", super().display()) # or Person.display(self)
student1 = Student("Alice", 30, 101)
student1.display()
# Output:
# ID: 101 Name: Alice, Age: 30
5.4.2 Multiple Inheritance
In multiple inheritance, a class inherits from more than one parent class.
The pictorial representation of multiple inheritance is:
A B \ / C
Syntax:
class ParentClass1:
#code block
class ParentClass2:
#code block
class ChildClass(ParentClass1, ParentClass2):
#code block
Example:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def display(self):
return f"Name: {self.name}, Age: {self.age}"
class Address:
def __init__(self, city, state):
self.city = city
self.state = state
def display(self):
return f"City: {self.city}, State: {self.state}"
class Student(Person, Address):
def __init__(self, name, age, id, city, state):
Person.__init__(self, name, age)
Address.__init__(self, city, state)
self.id = id
def display(self):
print(f"ID: {self.id}", Person.display(self), Address.display(self))
student1 = Student("Alice", 30, 101, "New York", "New York")
student1.display()
# Output:
# ID: 101 Name: Alice, Age: 30 City: New York, State: New York
5.4.3 Multilevel Inheritance
In multilevel inheritance, a class inherits from a parent class, and another class inherits from the child class.
The pictorial representation of multilevel inheritance is:
A | B | C
Syntax:
class ParentClass:
#code block
class ChildClass(ParentClass):
#code block
class GrandChildClass(ChildClass):
#code block
Example:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def display(self):
return f"Name: {self.name}, Age: {self.age}"
class Student(Person):
def __init__(self, name, age, id):
super().__init__(name, age) # or Person.__init__(self, name, age)
self.id = id
def display(self):
print(f"ID: {self.id}", super().display()) # or print(f"ID: {self.id}", Person.display(self))
class CollegeStudent(Student):
def __init__(self, name, age, id, classes):
super().__init__(name, age, id) # or Student.__init__(self, name, age, id)
self.classes = classes
def display(self):
print(f"Class: {self.classes}", super().display()) # or print(f"Class: {self.classes}", Student.display(self))
student1 = CollegeStudent("Alice", 30, 101, "Bachelor")
student1.display()
# Output:
# Class: Bachelor ID: 101 Name: Alice, Age: 30
5.4.4 Hierarchical Inheritance
In hierarchical inheritance, more than one class inherits from a single parent class.
The pictorial representation of hierarchical inheritance is:
A / \ B C
Syntax:
class ParentClass:
#code block
class ChildClass1(ParentClass):
#code block
class ChildClass2(ParentClass):
#code block
Example:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def display(self):
return f"Name: {self.name}, Age: {self.age}"
class Student(Person):
def __init__(self, name, age, id):
super().__init__(name, age) # or Person.__init__(self, name, age)
self.id = id
def display(self):
print(f"ID: {self.id}", super().display()) # or print(f"ID: {self.id}", Person.display(self))
class Employee(Person):
def __init__(self, name, age, emp_id):
super().__init__(name, age) # or Person.__init__(self, name, age)
self.emp_id = emp_id
def display(self):
print(f"Emp ID: {self.emp_id}", super().display()) # or print(f"Emp ID: {self.emp_id}", Person.display(self))
student1 = Student("Alice", 30, 101)
student1.display()
employee1 = Employee("Bob", 25, 201)
employee1.display()
# Output:
# ID: 101 Name: Alice, Age: 30
# Emp ID: 201 Name: Bob, Age: 25
Note: Hybrid inheritance is a combination of two or more types of inheritance.
6. Method Resolution Order (MRO)
Method Resolution Order (MRO) is the order in which methods are resolved in the inheritance hierarchy. It defines the order in which the base classes are searched when executing a method. This is particularly important in multiple inheritance scenarios.
Example:
class C:
f = "dirajan"
class A(C):
f = "nirajan"
class B(C):
f = "kirajan"
class D(A, B):
pass
def display(self):
print(self.f)
d = D()
print(D.__mro__) # Shows the method resolution order
d.display()
Output:
(, , , , ) nirajan
It means Python will search for the attribute or method in the order of D->A->B->C->object. If the attribute/method is not found in D, it will search in A, and so on. But if the attribute/method is found in D, it will not search further in A, B, C, or object.
7. Properties - Getters and Setters
Properties provide controlled access to class attributes. They allow you to implement getter and setter methods that act like attributes.
7.1 Getters
Getters are methods implemented using the @property
decorator. They are specially used:
- To act as a value (data) instead of a method
- To access the value of a private attribute without directly accessing it
Syntax:
class ClassName:
@property
def method_name(self):
#code block
Example:
class Person:
def __init__(self, name, age):
self._name = name # Protected attribute
self._age = age # Protected attribute
@property
def display(self):
return f"Name: {self._name}, Age: {self._age}"
person1 = Person("Nirajan", 20)
print(person1.display) # Output: Name: Nirajan, Age: 20
# Note: No parentheses used - accessed like an attribute, not a method
7.2 Setters
Setters are methods implemented using the @method_name.setter
decorator. They are specially used:
- To set the value of a private attribute without directly setting it
- To perform validation before setting the value of an attribute
Syntax:
class ClassName:
@method_name.setter
def method_name(self, value):
#code block
Example:
class Person:
def __init__(self, name, age):
self._name = name
self._age = age
@property
def display(self):
return f"Name: {self._name}, Age: {self._age}"
@display.setter
def display(self, value):
self._name, age_str = value.split(",")
self._age = int(age_str)
person1 = Person("Nirajan", 20)
print(person1.display) # Output: Name: Nirajan, Age: 20
person1.display = "Alice, 30" # Using setter to modify attributes
print(person1.display) # Output: Name: Alice, Age: 30
8. Special Methods (Magic/Dunder Methods)
Magic methods, also known as dunder methods (double underscore), are special methods that have double underscores at the beginning and end of their names. They are used to define the behavior of objects and are automatically called when certain operations are performed on objects.
Some of the commonly used magic methods are:
__init__
: Constructor method, called when an object is created__str__
: Called by thestr()
built-in function to return a string representation of an object__repr__
: Called by therepr()
built-in function to return an unambiguous string representation of an object__add__
: Called by the+
operator to perform addition__len__
: Called by thelen()
built-in function to return the length of an object__call__
: Called when an object is called as a function
Note: All magic methods can be seen using
dir(object_name)
method, and we can override these methods in our class.
Example of various magic methods:
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def __str__(self):
return f"Name: {self.name}, Age: {self.age}"
def __repr__(self):
return f"Person('{self.name}', {self.age})"
def __add__(self, other):
return self.age + other.age
def __len__(self):
return len(self.name)
def __call__(self):
return f"Name: {self.name}, Age: {self.age}"
person1 = Person("Alice", 30)
person2 = Person("Bob", 25)
print(person1) # Output: Name: Alice, Age: 30 (uses __str__)
print(repr(person1)) # Output: Person('Alice', 30) (uses __repr__)
print(person1 + person2) # Output: 55 (uses __add__)
print(len(person1)) # Output: 5 (uses __len__ to get length of name)
print(person1()) # Output: Name: Alice, Age: 30 (uses __call__)
9. Operator Overloading
Operator overloading is a feature of object-oriented programming that allows us to define the behavior of operators for user-defined objects. It lets us define how operators like +
, -
, *
, /
, ==
, !=
, etc., behave with objects of our class.
To overload an operator, we define the corresponding magic method in the class:
Example:
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
# Define what happens when + is used with Point objects
x = self.x + other.x
y = self.y + other.y
return Point(x, y)
def __str__(self):
return f"({self.x}, {self.y})"
point1 = Point(1, 2)
point2 = Point(3, 4)
point3 = point1 + point2 # Uses the __add__ method
print(point3) # Output: (4, 6)
For unary operators like negation (-
), we can overload the __neg__
method:
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __neg__(self):
# Define what happens when - is used with Point objects
return Point(-self.x, -self.y)
def __str__(self):
return f"({self.x}, {self.y})"
point1 = Point(1, 2)
point2 = -point1 # Uses the __neg__ method
print(point2) # Output: (-1, -2)
Note: We can only overload existing operators. We cannot create new operators.
10. Static and Class Methods
10.1 Static Methods
Static methods are methods that can be called without creating an object of the class. They are defined using the @staticmethod
decorator and can be called using the class name.
Syntax:
class ClassName:
@staticmethod
def method_name(parameters):
#code block
Example:
class Calculator:
@staticmethod
def add(a, b):
return a + b
result = Calculator.add(5, 3) # Calling static method directly
print(result) # Output: 8
# Can also call using an object (though not typical)
calculator = Calculator()
result = calculator.add(5, 3)
print(result) # Output: 8
10.2 Class Variable
class variables are shared across all instances of a class, while instance variables are unique to each instance. Class variables are defined within the class but outside any methods, whereas instance variables are typically defined within the constructor method (__init__
) using the self
keyword.
class ClassName:
class_variable = value # Class variable
def __init__(self, instance_variable):
self.instance_variable = instance_variable # Instance variable
Note: For all object the class class_variable will have the same value but instance_variable will have different value for different object.
10.3 Accessing Class Variables
We can access class variables using the using an object of the class.
Syntax:
object_name.class_variable
10.4 Updating Class Variable Method
To update a class variable method, we use @classmethod decorator. Class methods take cls
as the first parameter, which refers to the class itself.
Syntax:
class ClassName:
class_variable = value # Class variable
@classmethod
def method_name(cls, parameters):
#code block
Example:
class Person:
population = 0
def print_population(self):
print(f"Population: {self.population}")
@classmethod
def update_population(cls,value):
cls.population = value
person1 = Person()
person2 = Person()
person1.print_population() # Output: Population: 0
Person.update_population(100) # Update population using class method
person2.print_population() # Output: Population: 100
person1.print_population() # Output: Population: 100
10.4 Some Misconception
What happen if we try to modify population like this:
class Person:
population = 0
def print_population(self):
print(f"Population: {self.population}")
def update_population(self,value):
self.population = value # This creates an instance variable, not modifies class variable
person1 = Person()
person2 = Person()
person1.update_population(100) # This creates an instance variable, not modifies class variable
person1.print_population() # Output: Population: 100
person2.print_population() # Output: Population: 0
or
class Person
population = 0
def print_population(self):
print(f"Population: {self.population}")
person1 = Person()
person2 = Person()
person1.population = 100 # This creates an instance variable, not modifies class variable
person1.print_population() # Output: Population: 100
person2.print_population() # Output: Population: 0
To understand this we should first understand priority always remember: instance variable > class variable
What happen here is conside 1st example:
- we write
person1=Person()
this will create a instance of Person and create a class variable population=0 which is shared to all object of Person class. - then we write
person2=Person()
this will create another instance of Person and share the same class variable population=0 - then we write
person1.update_population(100)
when we call this method it will create a instance variable population=100 for person1 object only which we can see using dict method as
print(person1.__dict__) # Output: {'population': 100}
print(person2.__dict__) # Output: {}
- then we write
person1.print_population()
here it will first check for instance variable population in person1 object and find population=100 so it will print 100 - then we write
person2.print_population()
here it will first check for instance variable population in person2 object andnot find any instance variable so it will check for class variable population and find population=0 so it will print 0
11. Introspection with dir()
and __dict__
11.1 The dir()
Method
The dir()
method returns a list of attributes and methods of any object. It provides a way to introspect objects at runtime.
Syntax:
dir(object)
Example:
class Person:
def __init__(self):
self.name = "Alice"
self.age = 30
person1 = Person()
print(dir(person1))
# Output: ['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name']
Example with list:
l = [1, 2, 3]
print(dir(l))
# Output: ['__add__', '__class__', '__class_getitem__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
11.2 The __dict__
Method
The __dict__
attribute contains a dictionary of an object’s attributes. It provides another way to examine an object’s state.
Syntax:
object.__dict__
Example:
class Person:
def __init__(self):
self.name = "Alice"
self.age = 30
person1 = Person()
print(person1.__dict__) #{'name': 'Alice', 'age': 30}
person1.name = "Bob" # Set an instance attribute
print(person1.__dict__) # {'name': 'Bob', 'age': 30}
12. Nested Classes
A class can be defined inside another class. Such a class is known as a nested class. Nested classes help organize code and encapsulate related functionality.
12.1 Basic Nested Class
Syntax:
class OuterClass:
class InnerClass:
#code block
Example:
class OuterClass:
def __init__(self):
self.name = "Alice"
self.age = 30
class InnerClass:
def display(self, outer):
print(f"Name: {outer.name}")
print(f"Age: {outer.age}")
outer1 = OuterClass()
inner1 = outer1.InnerClass()
inner1.display(outer1)
# Output:
# Name: Alice
# Age: 30
12.2 Creating an Object of the Nested Class
Syntax:
outer_object = OuterClass()
inner_object = outer_object.InnerClass()
Example:
class OuterClass:
def __init__(self):
self.name = "Alice"
self.age = 30
class InnerClass:
def display(self, outer):
print(f"Name: {outer.name}")
print(f"Age: {outer.age}")
outer1 = OuterClass()
inner1 = outer1.InnerClass()
inner1.display(outer1)
# Output:
# Name: Alice
# Age: 30
12.3 Creating an Object of the Nested Class Inside the Outer Class
class OuterClass:
def __init__(self):
self.name = "Alice"
self.age = 30
self.inner = self.InnerClass() # Create InnerClass instance
class InnerClass:
def display(self, outer):
print(f"Name: {outer.name}")
print(f"Age: {outer.age}")
outer1 = OuterClass()
outer1.inner.display(outer1)
# Output:
# Name: Alice
# Age: 30
14. How python works internally
Python Instance Variables and Method Resolution Guide
Understanding Instance Variable Storage
Key Concepts:
- Single Object per Instance: When you create a class instance, Python creates only ONE object
__dict__
Storage: All instance attributes are stored in the instance’s__dict__
dictionary- Dynamic Creation: Attributes are created when first assigned, not when accessed
- Direct Modification: All attribute changes modify the same
__dict__
Basic Example:
class Person:
def __init__(self, name):
self.name = name # Creates "name" key in __dict__
p = Person("Alice")
print(p.__dict__) # {'name': 'Alice'}
p.age = 25 # Creates "age" key in __dict__
print(p.__dict__) # {'name': 'Alice', 'age': 25}
p.name = "Bob" # Modifies existing "name" key
print(p.__dict__) # {'name': 'Bob', 'age': 25}
How Attribute Assignment and Access Works
Core Rules:
- Assignment (
self.attr = value
): Always creates/modifies key in instance’s__dict__
- Access (
self.attr
): Checks instance__dict__
first, then class hierarchy - Missing Attribute: Accessing non-existent attribute raises
AttributeError
- Creating Attribute: Assigning to non-existent attribute creates new
__dict__
entry
Example:
class Demo:
def __init__(self):
self.x = 10
def modify(self):
self.x = self.x * 3 # Modifies existing key
self.y = 100 # Creates new key
d = Demo()
print(d.__dict__) # {'x': 10}
d.modify()
print(d.__dict__) # {'x': 30, 'y': 100}
# This would raise AttributeError:
# print(d.z) # AttributeError: 'Demo' object has no attribute 'z'
# This creates new attribute:
d.z = 50
print(d.__dict__) # {'x': 30, 'y': 100, 'z': 50}
Inheritance: One Instance, One __dict__
Key Points:
- Single
__dict__
: Child class instance has only ONE__dict__
- Shared Storage: Parent and child methods modify the SAME
__dict__
- No Separate Variables: Unlike C++, there’s no separate storage for parent/child attributes
Example:
class Parent:
def __init__(self):
self.name = "parent"
def set_parent_attr(self):
self.parent_var = "from parent"
class Child(Parent):
def __init__(self):
super().__init__()
self.name = "child" # Overwrites parent's name
def set_child_attr(self):
self.child_var = "from child"
c = Child()
print(c.__dict__) # {'name': 'child'}
c.set_parent_attr() # Parent method modifies child's __dict__
print(c.__dict__) # {'name': 'child', 'parent_var': 'from parent'}
c.set_child_attr()
print(c.__dict__) # {'name': 'child', 'parent_var': 'from parent', 'child_var': 'from child'}
Variable Access Levels: Public, Protected, Private
Concepts:
- Public (
self.var
): Accessible everywhere - Protected (
self._var
): Convention for internal use (still accessible) - Private (
self.__var
): Name mangling applied, creates_ClassName__var
Public and Protected Variables
- Public variables (
name
) and protected variables (_name
) are directly shareable between base and derived classes - They are stored in the instance dictionary with their original names
- No name transformation occurs
Private Variables - Name Mangling Behavior
Instance Variable Storage
- When creating private instance variables (
__name
) in base and derived classes, Python applies name mangling - All variables are stored in the same single
__dict__
for the instance - However, private variables get different keys due to name mangling
Name Mangling Process
- Base class A:
__name
becomes_A__name
in the dictionary - Derived class B:
__name
becomes_B__name
in the dictionary - This creates unique keys for each class’s private variables
Access Mechanism
- When accessing
self.__name
in class A → Python searches for_A__name
in__dict__
- When accessing
self.__name
in class B → Python searches for_B__name
in__dict__
- Same attribute name, different mangled keys, but accessed through the same class functions
Example:
class AccessDemo:
def __init__(self):
self.public = "everyone can see"
self._protected = "internal use"
self.__private = "name mangled"
obj = AccessDemo()
print(obj.__dict__)
# {'public': 'everyone can see', '_protected': 'internal use', '_AccessDemo__private': 'name mangled'}
# Accessing:
print(obj.public) # Works
print(obj._protected) # Works (but shouldn't be used externally)
# print(obj.__private) # AttributeError
print(obj._AccessDemo__private) # Works (name mangled form)
Dictionary Structure Example:
instance.__dict__ = { 'public_var': 'shared', # Public - same key '_protected_var': 'shared', # Protected - same key '_A__private_var': 'base_value', # Private in base class '_B__private_var': 'derived_value' # Private in derived class }
Method Resolution Order (MRO) and Function Execution
Core Concepts:
- MRO: Python uses C3 linearization to determine method lookup order
- Method Lookup: When calling
self.method()
, Python searches MRO until it finds the method. It first searches function in 1st class of MRO if not found then second and so on - Attribute Access in Methods: Even when executing parent method,
self
refers to the instance - Single
__dict__
Rule: All methods modify the same instance__dict__
Single Inheritance Example:
class A:
def method(self):
self.a_var = "from A"
print(f"A.method, __dict__: {self.__dict__}")
class B(A):
def method(self):
self.b_var = "from B"
print(f"B.method, __dict__: {self.__dict__}")
super().method() # Calls A.method
b = B()
print(f"MRO: {B.__mro__}") # (<class 'B'>, <class 'A'>, <class 'object'>)
b.method()
# Output:
# B.method, __dict__: {'b_var': 'from B'}
# A.method, __dict__: {'b_var': 'from B', 'a_var': 'from A'}
Multiple Inheritance Example:
class Parent1:
def shared_method(self):
self.p1_var = "from Parent1"
class Parent2:
def shared_method(self):
self.p2_var = "from Parent2"
def unique_method(self):
self.unique_var = "from Parent2 unique"
class Child(Parent1, Parent2):
pass
c = Child()
print(f"MRO: {Child.__mro__}")
# (<class 'Child'>, <class 'Parent1'>, <class 'Parent2'>, <class 'object'>)
c.shared_method() # Parent1.shared_method wins (MRO order)
print(c.__dict__) # {'p1_var': 'from Parent1'}
c.unique_method() # Parent2.unique_method (only one available)
print(c.__dict__) # {'p1_var': 'from Parent1', 'unique_var': 'from Parent2 unique'}
Summary
Key Takeaways:
- One Instance = One
__dict__
: All attributes stored in single dictionary - Method Execution: MRO determines which method runs, but
self
always refers to the instance - All Methods Use Same Storage: Every method operates on the same instance
__dict__
- Name Mangling: Private variables (
__var
) become_ClassName__var
in__dict__
- MRO Rules: Left-to-right, depth-first search with C3 linearization for complex hierarchies
- Variable Sharing:
- Public/Protected: Same key names, directly shareable
- Private: Different mangled key names (
_ClassName__varname
), accessed through same class methods but stored separately
- Name Mangling Ensures: Private variable isolation while using unified storage
The fundamental difference from C++ is that Python maintains a single object with one __dict__
throughout the inheritance hierarchy, while all methods operate on this shared storage space. Name mangling ensures private variable isolation while maintaining the single dictionary approach.